Troubleshooting wireless networks with the OSI model – Layer 1

Troubleshooting Wireless Networks

Troubleshooting wireless networks with the OSI model

TransferTransfer

In this article, we will present a guide about troubleshooting WiFi Networks at Layer 1 of the OSI model. Click here to read about Layer 2.

Deploying a robust state-of-the-art WiFi network that allows delivering high performance and reliability has turned out to be a challenging task for many enterprises. Wireless networks can be expensive and complex to set up and implement; thus, organizations, more than ever, seek assistance from Service Providers.

Rightful, having a cloud-managed WiFi solution that proactively pinpoints performance issues before your customers know they exist, has become a necessity. Nowadays, network administrators need to be able to troubleshoot issues right away, remotely, and fast.

Outline the issues in your Wireless Networks

Before attempting to solve any issues with WLANs is crucial to understand the root of the problem and gather information about the situation by answering the Five Ws questions (who, what, when, where, why), to outline the issue and define an action plan.

Identify the issue by asking the right questions to your customer.

  1. What is the problem the customer has? Is it a slow connection to the Internet or no Internet access at all? Or does the Internet connection drop randomly?
  2. When is the problem happening? All the time, at certain times in the day, once in a while? Timestamps are key! Check the access points log files you are monitoring.
  3. Where is the problem happening? Is the problem described in question one happening in one area? Multiple areas? Is it campus-wide. By asking this question, the problem can be isolated to a specific access point or area.
  4. Who gets affected by this problem? Does the problem affect one client or many client devices? If it affects many devices, it might be a deeper issue; however, if it’s affecting one client, it might be a problem with the device itself and not with the entire WiFi network infrastructure.
  5. Why is the problem happening? Mostly it could be associated with changes carried out by the customer. Understanding if the customer did any change to the WiFi structure that might have triggered the problem is crucial.

Once you have gathered all the key information from your customer, it’s time to start troubleshooting your WLANs, layer by layer.

Troubleshooting Wireless Networks with the OSI model

At Tanaza, we like to take a structured approach when it comes to troubleshooting wireless networks. We use the OSI (Open Systems Interconnection) model as a framework for troubleshooting networks.

The OSI model is a conceptual model that enables different communication systems to “talk” in the same “language” using standard protocols. This universal language for computer networking splits up the communication system into seven different layers, each one stacked upon the last.

The OSI model helps to break down an issue and isolate the root of the problem. Ideally, we suggest taking a layer bottom-up approach. When it comes to WLANs, most of the WiFi problems happen in the first two layers of the OSI model. So, if the issue can be narrowed down to one specific layer, you can save some valuable time and avoid needless extra work.

OSI Model Layers

Troubleshooting Wireless Networks – Layer 1

The layer 1 of the OSI model, includes the physical equipment involved in the transmission and reception of data, like connectors, cables, switches, and fiber. In this layer, the data is converted into a bitstream, a series of 1s and 0s. That means the physical layer of devices, by default, must agree on code and modulations; thus, the 1s can be separated from the 0s on both devices.

As a rule of thumb, WiFi (802.11) operates at the first two layers of the OSI model, in other words, the physical layer and the data link layer. Broadly speaking, Physical Layer issues can be split into two main groups: outage and performance issues.

Outage issues

Investigating outage issues is the easiest one. Network admins can start by simply checking that all the equipment is connected correctly, and access points, switches, cables, and gateways are turned on and online. 

Performance issues

On the other hand, when delving into performance problems, it’s crucial to have the right tools to diagnose degraded performance. An easy and fast way to understand performance issues is by pinging devices to know whether the target device is active, the network path between source and destination is right in both directions, and also to measure the packet round trip time to determine latency and jitter levels. 

The Tanaza software has an embedded ping tool that allows network admins to perform routine ping tests. After pinging a device, the tool displays the ping results through dynamic diagrams. These graphics allow users to get a quick overview of the network situation in a fast and organized way, while at the same time pointing users in the direction of what’s causing the Physical Layer problem.

Also…

As part of the check-up, take a quick look at the configuration of the device’s drivers and the access points’ configuration. Commonly the main reasons for a breakdown in the connectivity. First-generation radio drivers and firmware are notorious for possible bugs, which often causes connectivity issues with brand-new access points. Ensure all client devices, whenever possible, have the latest drivers installed and ensure that all access points are up to date with the latest operating system. 

The Tanaza WiFi cloud management platform allows network admins to update the access point firmware of all cloud-managed access points in bulk without the need to reboot the devices and from remote. With each firmware release, Tanaza delivers turnkey features, patch vulnerabilities, and drive security and stability, to empower your devices.

Radio frequency signals can cause another potential performance problem. An outside entity causes noise that interferes with the signal or dataflow across the network, affecting not only the performance but also the coverage of the WLAN, i.e., a microwave interfering with the WiFi signal.

High Power. Having the access points transmitting at full power, particularly for indoor deployments, might lead to oversized coverage, increasing co-channel interference and roaming issues, like sticky clients. So, take a notch down in the access point power.  

You can always avoid these problems with good WLAN design. Most of the issues that appear because of inadequate WLAN design are coverage holes due to access points misplacing and antenna orientation and also co-channel interference. Design your WLANs for for capacity and air time, not for coverage. Read our 7 key recommendations to plan a better WLAN design.

In our next blog article, we will be discussing how to troubleshoot WiFi networks using the OSI model – Layer 2. Make sure to keep an eye on our Tanaza blog.

Looking for a cloud-based platform to manage your WLANs?

Tanaza is a complete cloud platform for IT professionals to manage WiFi networks. Our platform allows MSPs, System Integrators, Network Administrators and ISPs to improve their efficiency levels by managing all WiFi networks, access points, SSIDs and clients from a single platform.

Tanaza simplifies the implementation and configuration of multiple WiFi access points. Users can manage the settings of hundreds of WiFi access points from a single cloud controller platform. Tanaza allows to enable SSIDs, configure IP addresses, set radio power and channels, and more from the managed WiFi dashboard.

Users can increase operational efficiency by enabling network-wide configurations and maximize service availability. Configure access points without rebooting them or restarting the services. Apply the same configuration to multiple access points simultaneously, each access point added to the network will immediately receive the same configurations as the others.

Among the main features of Tanaza:

  • Centralized configuration
  • Remote monitoring
  • Multi-Role Access
  • Fast Roaming
  • Integrated hotspot with advanced analysis

Tanaza is compatible with the most well-known access point brands in the market, like Ubiquiti, Amer Networks, TP Link, LigoWave and more. Alternatively, users can choose from our line of Tanaza Powered Devices: wireless access points pre-loaded with TanazaOS – the powerful Tanaza operating system based on Linux.

Would you like to know more about the Tanaza platform? Download the Tanaza brochure

Try Tanaza

Experience the power of managing WiFi access points from the cloud with Tanaza.

Get Started

✔︎ No credit card required

Tanaza OS

Network Capacity Planning – Wireless Capacity vs Coverage

Network Capacity Planning – Wireless Capacity vs Coverage


Press play to listen to the article.

Try now the Tanaza
WiFi Management Platform

Get Started

✔︎ No credit card needed ✔︎​ Easy configuration

✔︎ Auto rollback when you desire

or continue to read more
about how to execute a perfect WiFi network planning.

Network capacity planning is the process of designing a wireless network for a specific location, bandwidth, number of access points, channel utilization, and other network capacity constraints. Doing proper network capacity planning helps network engineers to plan the WiFi structure adequately.

The process of designing a WiFi network can start in many ways. All IT teams take a different avenue when it comes to planning a WLAN’s structure. However, the goal of providing connectivity to a specific location in which users will be connected to the network doesn’t change.

In our previous article, we have put together seven key recommendations for network engineers to plan a better WiFi network design.

In this article, we will take a hands-on approach to plan wireless networks. Before deep-diving into it, let’s take a quick look at the differences between planning a wireless network for coverage vs. capacity.

Wireless network for coverage

When deploying WLANs for coverage, there are three main variables to consider: device power settings, physical environment (like buildings, obstacles, walls), and the device antenna capabilities. The latest enterprise gear will automatically adapt their settings to supply ideal coverage. However, long gone are the days when we used to plan for coverage. Nowadays, with the fast-paced growth of IoT devices connected to networks, users not only want to connect their laptops and smartphones to a WiFi network. They want to be on the move and still have a great connection. They want to upload, download, and stream content without the ‘suffer-buffer’ and slow loading rates. 

Consequently, planning only for coverage seems falling short for the current users’ needs. A proper WLAN design for capacity and coverage, paired with spectrum analysis and validation site surveys (pre and post-deployment), will reduce most of the support tickets coming your way related to the performance of your customers’ networks.

Wireless network for capacity

When designing for capacity, instead, we need to analyze multiple variables that will shape the final decision, like the main application to be supported, how many users will be using the network simultaneously, estimate bandwidth per user, and access points throughout. Also, plan for site survey validation that among all the things that are useful for, it helps you to avoid the typical coverage holes in the WiFi networks.

Nowadays, designing WLANs rigidly for coverage is an antiquated concept. WLAN capacity and airtime consumption reduction come first. However, before starting a WLAN design, it is necessary to assess the primary purpose of the network, the main application to be supported, number of concurrent users, type of client devices expected in the network, bandwidth per-user goal, and access points throughput.

Let’s look at each segment in greater detail.

Wireless Network Capacity Planning – How to get started

Follow these steps to start your WLAN design based on capacity:

Assess the application bandwidth requirement

When assessing the application throughput, there’s a primary application that drives the need for connectivity. Let’s take a school as our main example for this article. 

The school’s primary application might be browser-based, streaming a video class, or a learning platform. Understanding what the school needs will help you to know what should be the per-user bandwidth goal. The latter will drive further design network decisions.

We have a tool that can help you to calculate the bandwidth requirement. We created it to suggest the type of access points suitable per location and application type, but to estimate the required bandwidth per-user connection, it comes in handy. Check it out here.

Assess the Aggregate Application Throughput

Once you know the bandwidth throughput per application and connection, you can calculate the aggregate application throughput needed in the area you intend to cover with the WLAN.

As a thumb of rule, you should have an aggregate application throughput for different areas. For instance, one for the classrooms, another one for the halls and the staff offices, as the connections and usage might differ in each area. 

So, let’s say you are designing a WiFi network for a school to support video streaming, which requires at least 3 Mbps per user in a classroom of 50 students.

[Application Throughput] * [Number of Concurrent Users] = Aggregate Application Throughput
So if we do quick maths, it would be:
3 Mbps * 50 students = 150 Mbps for the classroom
Note: the result you get here is a theoretical estimation to use in the calculations of the step 4.

Assess the Aggregate Throughput per Access Point

In practice, most APs support the latest technologies and maximum data rates defined as per the standards. However, the average AP throughput available is usually dictated by other factors like client device capabilities, concurrent users per access point, type of technologies to be supported, and bandwidth.

In reality, client device capabilities can have a meaningful impact on throughput as client devices supporting only legacy rates will have lower throughput than a client device supporting newer technologies. 

When assessing client device throughput requirements, you can run a survey on client devices to determine their wireless capabilities. For instance, if the school wants to prioritize throughput for proprietary hardware, you should identify the supported wireless bands of those devices (e.g., 2.4 GHz vs. 5 GHz). Also, check on the supported wireless standards (802.11a/b/g/n/ac), and the number of spatial streams each device supports. 

Recommendations:

  • To ensure the quality of experience, make sure to have around 25 client devices per radio or 50 client devices per AP in high-density environments. 
  • Also, consider in a high-density context, we’d suggest having a channel width of 20 MHz to reduce the number of access points using the same channel.
  • Client devices do not always support the fastest data rates. Thus, based on the manufacturer’s advertised data rate, then estimate the wireless throughput capability of the client device. A common practice is to consider about half of the data rate. Then, based on that value, reduce further the throughput by 30% for a 20 MHz channel width.

Calculate how many access points are required for a perfect network capacity planning

We suggest double-checking the application throughput requirements. This will have a high impact on the number of access points to deploy and, therefore, it will increase your operational costs if miscalculated.

Going back to our previous example, designing the WLAN for a school, with the following requirements and assumptions:

  • Main application to support: video streaming, which requires 3 Mbps with standard resolution.
  • The classroom accommodates 50 students streaming video to the school laptop at the same time.
  • All laptops support the 802.11ac wireless standard. Also, have 3 spatial streams capability.
  • The WiFi network is configured for 20MHz channels.
  • The WiFi access point yields up to 101 Mbps of throughput.

To calculate roughly how many APs are needed to satisfy the video streaming application capacity, use the following formula:

[Aggregate Application Throughput] / [Access Point Throughput] = Number of Access Points based on throughput
150 Mbps/101Mbps = 1.48 ~ 2 APs per classroom.

Once the number of access points is defined, then the AP’s physical placement can take place. Carry out a site survey to ensure adequate signal coverage in all areas and also proper spacing of APs on the floor plan with the minimum co-channel interference and proper cell overlap. It’s crucial to consider the RF environment and construction materials used for AP placement.

In our next blog article, we will be discussing how to calculate the real access point throughput vs the one advertised by the manufacturer.

Make sure to keep an eye on our blog. We will release weekly blog posts about WiFi network design, key for a healthy and well-performing WiFi network.

Try Tanaza

Experience the power of managing WiFi access points from the cloud with Tanaza.

Get Started

✔︎ No credit card required

WiFi Network Design

WiFi network design – What to take into consideration when designing WLANs
Transfer

Try now the Tanaza
WiFi Management Platform

Get Started

✔︎ No credit card needed ✔︎​ Easy configuration

✔︎ Auto rollback when you desire

or continue to read more
about WiFi network design.

In the process of WiFi network design, you need to consider many factors to plan it out thoroughly. In this blog article, I won’t cover the typical step-by-step of ‘how to design a WLAN’, instead, I will highlight key elements that you should take into consideration to successfully design a WLAN. 

WiFi Network Design. Key considerations

1) Plan for capacity not for coverage

Not that long ago, designing a WiFi network was pretty much focused around physical site surveys to determine the number of access points needed to provide enough coverage. Afterward, you would evaluate the results and compare the amount of APs against an acceptable minimum of signal strength, and the whole WLAN design would be deemed a success. 

Going down this road is suitable for WLANs that are planned for coverage but certainly is not the right approach to meet capacity requirements. For instance, when you plan for RF coverage, you leave out key elements like the number of concurrent users, applications’ bandwidth needs, and capabilities that you would cover if you design for capacity instead.

Wireless engineers and IT consultants need to fully understand the network design requirements to ensure a successful design. This step is crucial, so don’t skip it! This will help you reduce the need for further site surveys after you deploy the WiFi infrastructure and deploy additional access points in the long run. 

Grab all the details:

  • What types of applications will be expected in the network, e.g., web browsing, VoIP calls, software, or video streaming? Calculate the bandwidth per user with our tool.
  • What technologies should WiFi infrastructure support (802.11 a/b/g/n/ac)?
  • How many client devices will connect to the WiFi network simultaneously? It will help you to determine the number of spatial streams, technology, and access point type.
  • What are the key areas you need to cover and provide WiFi?
  • Estimate the number of concurrent devices per area 
  • Check if there are any limitations for cabling or any aesthetic requirements, e.g., mesh solution.
  • Also, consider power constraints. It’s way more useful to have an infrastructure equipped with PoE+ that allows you to support high performing access points. 

Once you gather all this information, you can adequately plan for capacity!

2) Channel utilization

The WiFi network management platform you choose should have incorporated a tool to manage radiofrequency. So, it can dynamically assign access points channels, adjust the access point transmit power, and provide coverage lapse mitigation for the WiFi infrastructure. 

For instance, for the 802.11ac wireless standard, radio frequency management should be executed at 20, 40, and 80MHz channel widths. Different client devices will support different channel widths for the 802.11 protocols. Client devices that support the wider channel widths will support higher bandwidth within the particular protocol.

Estimate how many client devices you can allocate per band. With newer technologies, more client devices now support dual-band operation, and hence using proprietary implementation devices can be steered to 5 GHz. A typical design approach is to do a 30/70 split between 2.4 GHz and 5 GHz. So, do the maths!

3) Roaming

Take into consideration when designing WLANs, especially for high-density environments, that roaming will happen very often. Having access points that support fast roaming or a WiFi management software that can give this capability to access points is crucial—fast roaming aids in reducing application latency while the client device roams from one access point to another.

Furthermore, the placement of access points plays a significant role in roaming. Even after deploying the access points in the right locations, roaming may not perform as you would expect. This is merely due to the variety of client devices connected in the network with diverse Network Interface Cards (NICs) and roaming algorithms. 

Keep in mind that in high-density environments, it is acceptable if a client device doesn’t roam to every access point in the roaming path and only roams to every other access point, as far as roaming is seamless before the client device’s Received Signal Strength Indicator (RSSI) falls between 75 dBm to 80 dBm.

Although the client device usually takes the roaming decision, a management software like Tanaza allows you to enable the fast roaming feature on top of devices compatible with our platform. Lastly, to maximize speed and facilitate roaming, you should disable lower data rates in support of legacy wireless protocols.

4) Think Mobile – Again, Think mobile

A good WLAN design needs to be built up, also, for mobile – its a must, not a luxury! The wireless design for deployment should be optimized for every device, from smartphones and IoT to computers and tablets. Having the right wireless design comes first, especially when ensuring elevated device performance and overall mobility for a better end-user experience. This also means considering features such as 802.11r/w/v.

5) SSIDs

To maximize performance in the wireless space and simplify deployment, try to minimize the number of SSIDs being broadcasted into the environment. The drawback of enabling more SSIDs is that it generates extra channel utilization due to overhead. A target of three SSIDs per access point provides for a flexible yet straightforward deployment model. 

For example, you can have one SSID using a captive portal for guest access and 802.1x client provisioning. A second SSID for 802.1x authenticated users and devices. And a third SSID for particular use cases or specialized wireless devices, e.g., Wi-Fi-enabled VoIP phones, non-802.1x capable devices, or specialized network devices. 

For other use cases, different SSIDs may be required depending on your specific needs, but strive for no more than 3 SSIDs per access point.

6) BYOD

Users want to connect their personal devices to public and private WiFi networks. It’s the standard. Just make sure that users are routed through a web content filter to provide a secure browsing experience to all users.

Tanaza features a cutting-edge integrated network content filter that blocks users from accessing inappropriate or unauthorized websites and applications while using your WiFi networks. This filter blocks malware internet pages and can work as a parental control software tool too.

Lastly, have in place a limit per-user bandwidth consumption in the network to manage its performance. Don’t forget to take into account that the BYOD trend has a direct consequence on the bandwidth and throughput requirement.

7) Bandwidth limitation

Our last recommendation for a better WiFi network design is to put in place a per-client device bandwidth limit on all the WiFi network traffic. Consider that if you prioritize applications such as video and voice, it will significantly impact the network’s bandwidth, limiting the performance of other applications. For instance, 5 Mbps is a good recommendation for a per-client bandwidth limit in a high-density environment. Of course, you can neglect this limit for specific devices and applications and adjust it to your particular needs.
With the ever-increasing use of IoT devices, as well as the exponential use of cloud-based applications, critical to businesses everywhere, it forces IT specialists and consultants to be one step ahead of the game and be prepared. This means having the right wireless network design to meet the client’s needs. 

Make sure to keep an eye on our blog. We will release weekly blog posts about WiFi network design, essential for a healthy and well-performing WiFi network.

Try Tanaza

Experience the power of managing WiFi access points from the cloud with Tanaza.

Get Started

✔︎ No credit card required

Related articles:

 

MSPs – The ultimate guide to the 802.11 ax wireless standard

https://www.tanaza.com/blog/tanazaos-and-openwrt-differences-and-similarities/

Webinar “Best practice per implementare reti WiFi nelle scuole”

Tanaza presenta il Webinar “Best practice per implementare reti WiFi nelle scuole”

Un Webinar per scoprire come implementare al meglio le reti WiFi nelle scuole

Gli operatori che si trovano a realizzare reti WiFi negli ambienti legati al mondo dell’istruzione, devono garantire la migliore progettazione, pianificazione e implementazione di reti wireless in situazioni ad alta densitĂ , come le scuole.

Ma, quali sono le pratiche da seguire, le tecnologie necessarie e le funzionalitĂ  piĂą utili da considerare per implementare reti WiFi nelle scuole italiane?

A questo e altri quesiti risponde il Webinar gratuito organizzato da Tanaza, in collaborazione con S-MART, “Best practice per implementare reti WiFi nelle scuole”.
Nel webinar, i relatori Sebastiano Bertani, CEO di Tanaza e Michele Risegari, Brand Manager di S-MART, cercheranno di rispondere a tutti i dubbi e le domande riguardo l’implementazione di reti negli ambienti scolastici, commentando i requisiti WLAN e le funzionalità fondamentali per le reti wireless nelle scuole, la gestione centralizzata in cloud e le diverse opzioni per proteggere le reti WLAN da attacchi informatici e minacce alla sicurezza.

MSP, ISP e tecnici del settore potranno usufruire di preziosi suggerimenti e accorgimenti di cui tener conto e utilizzarli come linee guida nella realizzazione dei loro progetti.

Tanaza aderisce al Piano Scuola come partner per la gestione software delle reti WiFi

Piano Scuola è il programma avviato dal Comitato per la diffusione della Banda Ultralarga, con l’intenzione di di potenziare la connettività delle scuole, portando negli istituti la banda ultralarga. In questo modo, la velocità di connessione negli edifici potrà raggiungere 1 Gbps con 100 Mbps di banda garantita, per un totale di 32.213 plessi scolastici.

L’81,4 % degli istituti scolastici potrà essere dotato dell’infrastruttura necessaria per avere una connettività veloce. Attraverso i fondi delle Regioni e altre economie di spesa si punterà poi a raggiungere progressivamente il 100% degli edifici scolastici. In particolare, il piano prevede il collegamento di tutti i plessi scolastici delle scuole medie e superiori sul territorio nazionale e, nelle “aree bianche”, anche il collegamento di tutti i plessi delle scuole primarie e dell’infanzia.

l’Italia si trova in una condizione di forte svantaggio rispetto alle altre nazioni europee, in particolare riguardo la diffusione dell’utilizzo di reti WiFi. Il programma è stato avviato con lo scopo di appianare questo divario. Sono stati quindi stanziati oltre 400 milioni di euro come fondi destinati alla realizzazione di una rete Internet con caratteristiche adatte agli istituti scolastici di tutto il territorio nazionale, potenziando la connettivitĂ  grazie alla banda ultralarga.

I fondi stanziati per il progetto

I 400.430.897 euro del Piano Scuola saranno utilizzati per coprire i costi strutturali della banda ultralarga nelle istituzioni scolastiche e i costi di connettivitĂ  per la durata di 5 anni, con inclusa la manutenzione delle reti, che saranno garantiti in maniera gratuita.

Partecipa al nostro webinar gratuito il prossimo 29 luglio 2020 | 11:00 am CEST / 10:00 am BST.

Iscriviti ora al webinar gratuito

Non puoi partecipare live?

Iscriviti e ti manderemo la sessione di registrazione del webinar!

Le funzionalitĂ  per una solida infrastruttura wireless nelle scuole

Le funzionalitĂ  per implementare una solida infrastruttura wireless nelle scuole

Prova ora la piattaforma WiFi Tanaza

Inizia una prova gratuita di 15 giorni

✔︎ Nessuna carta di credito necessaria ✔︎​ Configurazione semplice

✔︎ Esegui l’auto rollback quando desideri 

o continua a leggere come implementare
una solida infrastruttura wireless nelle scuole.

Piano Scuola per accelerare la realizzazione di reti WiFi nelle scuole

Piano Scuola è il fondo istituito a livello nazionale, per velocizzare l’installazione e la digitalizzazione dell’infrastruttura IT delle scuole.

Attualmente, l’Italia vede un forte divario rispetto agli altri Paesi europei, soprattutto in termini di diffusione dell’utilizzo di reti WiFi. Il programma è stato avviato proprio con l’intento di colmare definitivamente questo gap.

Sono stati infatti stanziati oltre 400 milioni di euro per la realizzazione di una rete Internet adeguata negli istituti scolastici di tutto il territorio nazionale, potenziando la connettivitĂ  grazie alla banda ultralarga.
La velocitĂ  di connessione negli edifici raggiungerĂ  1 Gbps con 100 Mbps di banda garantita, per un totale di 32.213 plessi scolastici. I costi copriranno le spese strutturali e la connettivitĂ  per la durata di 5 anni.

Leggi di piĂą sul Piano Scuola nel nostro articolo: Tanaza aderisce al Piano Scuola come partner per la gestione software delle reti wireless nelle scuole.

FunzionalitĂ  da considerare nelle reti WiFi scolastiche

Gli operatori dovranno tenere in considerazione alcune funzionalità fondamentali per una corretta progettazione, pianificazione e implementazione di reti wireless in situazioni ad alta densità, come le scuole. 

Cloud pubblico

Quando si parla di implementazioni di reti WiFi nelle scuole, il cloud pubblico rappresenta l’opzione migliore per gestire soluzioni di sicurezza wireless dal cloud. Il cloud pubblico offre un’infrastruttura potente e le applicazioni piĂą adatte a semplificare la gestione della rete e la sua sicurezza.

Inoltre, il public cloud consente di scalare senza limiti e senza interruzioni, e riduce il TCO, ovvero il calcolo di tutti i costi del ciclo di vita di un’apparecchiatura informatica IT, per l’acquisto, l’installazione, la gestione, la manutenzione e il suo smaltimento.

Monitoraggio da remoto

Il monitoraggio da remoto elimina la necessitĂ  per gli operatori IT di di essere fisicamente presenti sul posto per verificare lo stato della rete.
La possibilitĂ  di monitorare in remoto consente agli operatori di controllare ogni parte della rete da qualsiasi luogo e di essere avvisati tempestivamente dei problemi che interessano tutte le aree della rete, come indicatori di prestazione della rete WiFi e statistiche in tempo reale, sia a livello di rete WiFi sia a livello di access point.
Ogni access point parla individualmente con il cloud, non ci sono single point of failure che si avrebbero invece con controller, e di fatto l’impianto è modulabile come si preferisce, visto che la comunicazione col cloud è diretta tra cloud stesso e access point.

Web content filtering

Per garantire una maggiore sicurezza della rete, è importante tutelare con i giusti meccanismi di crittografia l’ambiente Internet nelle scuole, più facilmente esposto a rischi. Creare, dunque, una policy granulare per garantire che gli studenti siano protetti da siti web dannosi e non affidabili diventa essenziale nella progettazione di reti all’interno degli ambienti educativi.

Il Web content filtering consente proprio di configurare un sistema di filtro dei contenuti su tutta la rete, in modo da garantire una navigazione sicura per gli utenti. Grazie a questo strumento, la scuola può bloccare la navigazione di siti web inappropriati, ad esempio, contenuti pornografici, siti di scommesse e siti di malware.

Se vuoi conoscere tutte le funzionalità più adatte all’implementazione delle reti WiFi nelle scuole, scarica qui il nostro eBook e scopri anche come Tanaza può aiutarti nel progetto Piano Scuola.

eBook “WiFi nel settore dell’istruzione”

 

Cosa imparerai:

  • Le best practice per la progettazione di reti wireless ad alta densitĂ  nel settore dell’istruzione
  • Qual è la tipologia di cloud da utilizzare nelle scuole
  • Come implementare un Accesso Wireless sicuro
  • Qual è la funzione del walled garden nelle reti scolastiche
  • Come controllare le reti WiFi da remoto
  • Come controllare i requisiti di banda per evitare un sovraccarico

​

Scarica
l’eBook

WiFi nelle scuole – La situazione nel settore dell’istruzione

WiFi nelle scuole – La situazione nel settore dell’istruzione

Negli ultimi anni, abbiamo assistito a una rapida diffusione della tecnologia WiFi nelle scuole. Negli istituti scolastici si registra un uso crescente di dispositivi connessi a Internet a supporto della didattica e dei servizi a studenti e docenti. Lo studente medio possiede almeno tre dispositivi che utilizzano WiFi. Una rete WiFi solida e affidabile diventa, perciò, un requisito imprescindibile, soprattutto in un momento come questo, in cui la prospettiva di dover fruire di lezioni online sta diventando sempre più una certezza.

Utilizzo delle reti WiFi nelle scuole

Le reti WiFi rappresentano un mezzo fondamentale per facilitare l’uso dei servizi di networking disponibili all’interno di tutti gli ambienti scolastici e delle aree dedicate alla didattica.

La connessione WiFi facilita l’accesso immediato e illimitato a una moltitudine di risorse online da qualsiasi luogo della scuola. In questo modo, gli insegnanti possono incoraggiare un apprendimento indipendente e autonomo tra gli studenti, sviluppando allo stesso tempo metodi di insegnamento sempre piĂą creativi e interattivi. Inoltre, il WiFi nelle scuole aiuta a monitorare istantaneamente i progressi degli studenti stessi e a intervenire per assisterli sul momento quando necessario.

L’utilizzo di Internet tramite WiFi offre alle scuole e agli insegnanti il potenziale per un valido cambiamento nei metodi di insegnamento tradizionali, fornendo un ambiente di apprendimento piĂą moderno per gli studenti. Ancor di piĂą, se si considera che il WiFi assume importanza vitale, non solo all’interno delle classi, ma anche al di fuori, nelle aree sociali, in biblioteca e in tutti gli ambienti scolastici, dove gli alunni possono essere incoraggiati ad apprendere in un contesto piĂą autonomo.

Una ricerca dell’UniversitĂ  di Oxford sottolinea come, nonostante la maggior parte degli studenti ne sia provvisto, in molti ancora non possiedono dispositivi personali o una rete Internet a casa. Motivo per cui questi studenti, ancora al giorno d’oggi, risultano svantaggiati da un punto di vista accademico. Lo studio mette in evidenza come l’educazione andrebbe erogata in modi piĂą moderni ed evoluti, al fine di sostenere l’interesse e incoraggiare l’impegno interattivo degli alunni. Di conseguenza, la presenza di una rete WiFi nelle scuole diventa di primaria importanza.

Cosa richiedono le scuole?

Anche se le reti installate negli ambienti scolastici devono soddisfare requisiti alti in termini di dispositivi multipli, strumenti online, aule virtuali e una grande quantitĂ  di client, molti istituti non dispongono di personale IT dedicato, hanno budget limitati e dipendenti non tecnici. Pertanto, le soluzioni wireless proposte alle scuole devono venire incontro alle particolari esigenze del settore, risolvendo le sfide specifiche che una scuola si trova ad affrontare. I fornitori di rete, oltre alle funzionalitĂ  di base, dovranno offrire un WiFi affidabile e ad alta velocitĂ , semplicitĂ  di installazione e di configurazione, e la capacitĂ  di gestire in maniera efficiente anche un numero elevato di client connessi simultaneamente.

La situazione italiana

Il nostro Paese parte da una situazione svantaggiata che ci vede sotto la media europea nella diffusione dell’infrastruttura necessaria all’utilizzo di reti WiFi. Il Governo si è assunto un impegno forte e deciso, definendo una strategia che dovrĂ  essere periodicamente aggiornata adeguandosi all’evoluzione delle tecnologie, dei servizi e della domanda.

Il settore pubblico, in questo caso, è rappresentato dal Comitato per la diffusione della Banda Ultralarga (COBUL) che ha definito la strategia attuale e ne monitorerà la corretta esecuzione.

Perché è necessaria la banda ultralarga?

La banda ultralarga sarà l’infrastruttura portante dell’intero sistema economico e sociale su cui investire. L’Italia è indietro rispetto alle colleghe europee per quanto riguarda digitalizzazione e diffusione della banda ultralarga. Risulta quindi più che urgente, dotare il Paese di reti a banda ultralarga e accelerare così il processo volto alla digitalizzazione.

Con il Piano Strategico Banda Ultralarga, in corso in oltre 650 comuni, l’Italia ha elaborato una strategia nazionale che definisce i principi base delle iniziative pubbliche a sostegno dello sviluppo della banda ultralarga per garantire un corretto utilizzo dei fondi pubblici, riducendo così anche il peso amministrativo di regioni e comuni. 

L’obiettivo del piano strategico è quello di rimediare a questo divario infrastrutturale e di mercato, concentrandosi in particolare sulla realizzazione delle reti a 100 Mbps, il risultato più difficile da raggiungere per gli operatori di mercato.

Piano Scuola

In questo contesto, si fa strada il Piano Scuola, programma promosso per dare un sostegno alla digitalizzazione nelle scuole. Per il progetto sono stati stanziati oltre 400 milioni di euro come fondi destinati alla connessione alla rete Internet degli istituti scolastici su tutto il territorio nazionale, potenziando la connettività grazie alla banda ultralarga. 

La velocitĂ  di connessione negli edifici raggiungerĂ  1 Gbps con 100 Mbps di banda garantita, per un totale di 32.213 plessi scolastici. I costi copriranno le spese strutturali e la connettivitĂ  per la durata di 5 anni.

Gli operatori che saranno coinvolti nel progetto, dovranno muoversi d’anticipo e considerare una vasta gamma di fattori che andranno valutati in ambienti come le scuole, dove è necessario connettere contemporaneamente diversi dispositivi client, che caricano/scaricano e trasmettono contenuti in streaming. 

Quali sono le best practice da seguire nell’implementazione di reti WiFi per le scuole?

Per una corretta implementazione WiFi nelle scuole, è consigliabile seguire una serie di accortezze, in modo da non farsi trovare impreparati.

Ad esempio, uno dei primi passi da compiere riguarda la verifica della larghezza di banda. Infatti, quest’ultima deve essere sufficiente a supportare access point con capacità di trasmissione elevata, utilizzando switch POE per alimentare direttamente gli access point, rispettivamente da 1-10 Gbit al punto di aggregazione di tutto il traffico, e da 1 Gbit per gli switch periferici.

Sarebbe poi necessario effettuare un controllo sul posto per identificare e risolvere eventuali problemi di potenziali forme di interferenza, e prima dell’implementazione, provare a caricare completamente la rete per assicurarsi che l’impianto sia effettivamente in grado di gestire efficacemente tutto il traffico generato.

Se vuoi approfondire queste e scoprire le altre best practice da seguire quando si implementa una rete WiFi per scuole, scarica qui il nostro eBook.

eBook “WiFi nel settore dell’istruzione”

 

Cosa imparerai?

  • Le best practice per la progettazione di reti wireless ad alta densitĂ  nel settore dell’istruzione
  • Qual è la tipologia di cloud da utilizzare nelle scuole
  • Come implementare un Accesso Wireless sicuro
  • Qual è la funzione del walled garden nelle reti scolastiche
  • Come controllare le reti WiFi da remoto
  • Come controllare i requisiti di banda per evitare un sovraccarico

​

Scarica
l’eBook